On the mean values of Dirichlet L -functions
نویسندگان
چکیده
منابع مشابه
On the Mean Values of Dirichlet L-functions
Abstract. We study the 2k-th power moment of Dirichlet L-functions L(s, χ) at the centre of the critical strip (s = 1/2), where the average is over all primitive characters χ (mod q). We extend to this case the hybrid Euler-Hadamard product results of Gonek, Hughes and Keating for the Riemann zeta-function. This allows us to recover conjectures for the moments based on random matrix models, inc...
متن کاملThe Mean-square of Dirichlet L-functions
where α and β are small complex numbers satisfying α, β ≪ 1/ log q. Ingham [Ing] considered an analogous moment for the Riemann zeta-function on the critical line with small shifts. Paley [Pal] considered the moment above for Dirichlet L-functions. Heath-Brown [HB] has computed a similar moment, but for all characters modulo q, in the case that α = β = 0. His result is Theorem 1 (HB). There are...
متن کاملOn certain mean values and the value-distribution of logarithms of Dirichlet L-functions
We study the value-distribution of Dirichlet L-functions L(s, χ) in the half-plane σ = 1/2. The main result is that a certain average of the logarithm of L(s, χ) with respect to χ, or of the Riemann zeta-function ζ(s) with respect to =s, can be expressed as an integral involving a density function, which depends only on σ and can be explicitly constructed. Several mean-value estimates on L...
متن کاملN ov 2 00 6 On the mean values of Dirichlet L - functions
We study the 2k th power moment of Dirichlet L-functions L(s, χ) at the centre of the critical strip (s = 1/2), where the average is over all primitive characters χ (mod q). We extend to this case the hybrid Euler-Hadamard product results of Gonek, Hughes & Keating for the Riemann zeta function. This allows us to recover conjectures for the moments based on random matrix models, incorporating t...
متن کاملOn Mean Values of Dirichlet Polynomials
We show the following general lower bound valid for any positive integer q, and arbitrary reals φ1, . . . , φN and non-negative reals a1, . . . , aN , cq ( N ∑ n=1 a 2 n )q ≤ 1 2T ∫
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 2007
ISSN: 0024-6115
DOI: 10.1112/plms/pdm008